

An Introduction to
Programming with Scratch

Ronald Bourret

http://www.rpbourret.com/scratch

Table of Contents

Introduction ...3

Chapter 1: Movement and Loops ..5

Chapter 2: Conditional Actions and Keyboard Commands ..9

Chapter 3: Messages ...13

Chapter 4: Animation ..15

Chapter 5: Practice, practice, practice! ...21

Chapter 6: Variables ...23

Chapter 7: Algorithms...29

Chapter 8: Program Structure ...33

Chapter 9: Advanced Programs ..41

Chapter 10: Project ...43

2

Scratch

This class introduces programming using the Scratch programming language. The Scratch programming

language and environment are a project of the Lifelong Kindergarten Group at the MIT Media Lab.

They are available free of charge.

You can find Scratch at:

 http://scratch.mit.edu

License

This document is available under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0

International (CC BY-NC-SA 4.0) license. Under this license, you may:

 Share — copy and redistribute the material in any medium or format

 Adapt — remix, transform, and build upon the material

Under the following terms:

 Attribution — You must give appropriate credit, provide a link to the license, and indicate if

changes were made. You may do so in any reasonable manner, but not in any way that suggests

the licensor endorses you or your use.

 NonCommercial — You may not use the material for commercial purposes.

 ShareAlike — If you remix, transform, or build upon the material, you must distribute your

contributions under the same license as the original.

For a human-readable summary of this license, see:

 http://creativecommons.org/licenses/by-nc-sa/4.0/

For the complete license, see:

 http://creativecommons.org/licenses/by-nc-sa/4.0/legalcode

3

Introduction

This tutorial will introduce you to programming using Scratch from MIT.

Create a Scratch Account

Before you start programming, you will need to create a Scratch account.

1. Go to scratch.mit.edu.

2. Click Join Scratch.

3. Enter the requested information. (Use your real birth month and year. Do not use your school email

address, as it cannot receive email from Scratch.)

Scratch Editor

The Scratch editor has three main parts:

 Stage: Where your program runs.

 Sprite list: A list of the sprites (objects) in your program.

 Script editor / costume editor: Where you edit your programs or your sprite’s pictures.

When the Scripts tab is chosen, the script editor is shown (outlined in red):

The script editor has three main parts:

 Script area: Where you build scripts.

 Block menu: Where you choose the category of blocks (programming statements) to use.

 Block palette: Where you choose the block to use.

4

When the Costumes tab is chosen, the costume editor is shown (outlined in red):

5

Chapter 1: Movement and Loops

In this chapter, you will learn how to build simple scripts to make a sprite move around the stage.

Lesson 1-1: Moving

Program Name: Square

1. Click File/New to create a new project and enter a project name of Square.

2. From the Events menu, drag a when green flag clicked block to the scripts area. Your scripts area

should look like this:

3. From the Motion menu, drag a goto x: 0 y: 0 block to the scripts area and snap it to the bottom of the

when green flag clicked block. Your script should look like this:

4. Add a move 10 steps block to the bottom of your script and change the 10 to 100.

5. Click the green flag at the top right corner of the stage to run your program. Let’s look at what

happened:

 The when green flag clicked block tells Scratch that the other blocks in the script are to be

executed at the start of the program — that is, when the green flag is clicked.

 The go to x: 0 y: 0 block tells Scratch to move the sprite — that’s the cat, which is what you’re

writing instructions for — to the coordinates (0, 0). The stage has a coordinate system with (0, 0)

in the center, x values ranging from –240 to +240, and y values ranging from –180 to +180.

 The move 100 steps block tells Scratch to move the sprite 100 units in the direction it is facing.

6

Lesson 1-2: Turning and Waiting

Program Name: Square (continued)

Now it’s time to make your sprite move in a square.

1. Drag a turn counterclockwise 15 degrees block to the bottom of the script and change the 15 to 90:

2. Add more blocks until you have four move/turn pairs in your script:

3. Run your program. What happened? Nothing? Actually, the sprite moved in a square, but so quickly

that you couldn’t see it. You can fix that by adding wait 1 secs blocks from the Control menu to the

stack:

4. Run your program again. Better? If your sprite is too slow, you can always change the wait time.

7

Lesson 1-3: Repeat Loops

Program Name: Square (continued)

Look at your script. One thing that should strike you is that three blocks — move, turn, wait — are

repeated four times. Imagine if you wanted your cat to walk in a square 100 times. You’d need 1,200

blocks! That’s insane. (Not to mention a lot of work.)

Fortunately, there is an easy way to fix this: the repeat loop.

1. Drag the four sets of move/turn/wait blocks away from the bottom of the script.

2. Drag a repeat 10 block to the bottom of your script and change the 10 to a 4.

3. Drag one set of move/turn/wait blocks inside your repeat block. The result should look like this:

4. Now run your program. Your sprite still moves in a square, but with far fewer commands.

Repeat loops are an incredibly important programming tool. They allow you to repeat actions without

having to add extra blocks, thus saving lots of work. Use repeat loops!

Lesson 1-4: More Repeat Loops

Program Name: Square (continued)

You may have noticed that the move block makes your sprite jump from one place to another.

Sometimes, this is what you want. Other times, you might want your sprite to move smoothly across the

screen. One way to do this is to make it move multiple, shorter distances.

1. Replace the move 100 steps block with a repeat loop that moves the sprite 10 times, moving 10 steps

each time.

2. Remove the wait blocks so that the sprite doesn’t pause. (Remember, we added the wait blocks only

because the sprite moved too fast to see.)

3. Run your program and watch the sprite move more smoothly in a square.

Lesson 1-5: Forever Loops

Program Name: Square (continued)

What if you want to make your cat really, really dizzy? Or just want to do something forever? There is a

special kind of repeat loop for this called a forever loop, which you can find in the Control menu.

1. Replace the repeat 4 block with a forever block.

2. Run your program and watch your cat go round and round and round and round and ...

8

Lesson 1-6: Cleanup and Save

Program Name: Square (continued)

You probably have a lot of unused blocks laying around the script area.

1. Drag the unused blocks to the blocks palette to delete them.

2. Click File/Save to save your project.

9

Chapter 2: Conditional Actions and Keyboard Commands

In this chapter, you will learn to execute actions only under certain conditions. You will also learn to

make your sprite respond to keyboard commands.

Lesson 2-1: If Blocks

Program Name: Back and Forth

1. Create a new project (File/New) and name it Back and Forth.

2. Create a script that places the sprite at the center of the stage — the point (0, 0) — and makes it

move 10 steps forever.

3. Run your program. Notice that the sprite gets stuck at the right side of the stage. This is because

Scratch doesn’t ever let sprites go completely off the stage. We would like our sprite to move back

and forth across the stage.

(If your sprite doesn’t do anything at all, make sure you started your script with a when green flag

clicked block.)

4. After the move block, add blocks to create an if x position > 240 then command. You will need an if

___ then block from the Control menu, a greater-than (>) block from the Operators menu, and the

x position block from the Motion menu. You will also need to enter the number 240 in the greater-

than block. Your blocks should look like this:

5. Inside the if-then block, add a turn counterclockwise 180 degrees block:

This script tells Scratch to check if the x position of the sprite is greater than 240 — that is, if it is at

the right edge of the stage. If so, Scratch rotates the sprite 180 degrees. If not, nothing happens.

(There is also an if-then-else block so you can do something else if the test condition is false.)

Along with repeat loops, if-then and if-then-else statements are two of the main building blocks of

programs. Use them!

6. Run your program. Your sprite should move to the right edge of the stage, turn around, and move to

the left edge of the stage, where it gets stuck. To fix this, add blocks to rotate the sprite 180 degrees

if the x position is less than –240.

7. Run your program again. Your sprite should move endlessly between the right and left edges of the

stage.

8. To finish your program, keep your cat right side up. (You may have noticed that it is upside down

when moving left.) To do this, add a set rotation style left-right block from the Motion menu as the

first block in your script.

10

Lesson 2-2: Keyboard Commands

Program Name: Back and Forth (continued)

Let’s face it. Walking back and forth is boring. Time to make your sprite jump. To do this, you will add

blocks that move the sprite up and down 50 steps when the space bar is pressed.

1. From the Events menu, drag a when space key pressed block to the scripts area:

An event is something that happens. The main events in Scratch are starting the program, pressing

keys, and broadcasting and receiving messages, which are used to communicate between scripts and

between sprites.

2. Beneath the key-pressed block, add blocks to move the sprite up and down 50 steps in increments of

10 steps. You will need to use the change y by 10 block from the Motion menu.

3. Run your program. When you press the space bar, the sprite should jump up and fall back down.

Lesson 2-3: Adding More Sprites

Program Name: Back and Forth (continued)

Time to give your cat a reason to jump. Really, what cat jumps because you press a space bar? Lightning

is a much better motivator.

1. Click the Choose sprite from library icon:

2. Select the Lightning sprite and click OK. This adds a new sprite to the sprite list.

3. Add a script to hide the Lightning sprite when the program starts. You will need the hide block from

the Looks menu.

4. Add a script to make the Lightning strike the cat when the space bar is pressed. The lightning sprite

should move to the cat sprite, show itself, wait 0.1 seconds, and hide itself again. In addition to the

blocks you have already learned, you will need the go to mouse-pointer block on the Motion menu

— you will need to change mouse-pointer to Sprite1 in the drop-down list — and the show block

from the Looks menu.

5. Run your program, press the space bar, and watch the cat jump.

11

Lesson 2-4: Adding Sound

Program Name: Back and Forth (continued)

To finish the program, add a really good mrowr! when the cat gets zapped.

1. Click Sprite1 in the sprite list and click the Sounds tab.

2. Try the meow sound already there. If you don’t like it, click the speaker icon to choose a different

sound from the sound library.

3. Click the Scripts tab and find the play sound block from the Sound menu. Add this block to the

when space key pressed script. (Select the sound you want from the drop-down list.)

4. Run your program. Zap your cat.

Lesson 2-5: An A-maze-ing Exercise

Program Name: A-Maze-ing

In this exercise, you will create a simple maze game. To start, you will need (literally) to set the stage:

1. Create a new project and name it A-maze-ing.

2. Click the Stage icon to the left of the sprites list:

3. In the lower right corner of the costume editor, click Convert to vector. (If you are already in vector

mode, you don’t need to do this. We’ll explain bitmap and vector modes later. For now, all you need

to know is we will always use vector mode.)

4. Using the line tool (on the upper right side of the editor), draw a simple maze with red lines. Make

sure that the lines are far enough apart for the cat sprite to (barely) fit between them.

5. Write scripts so that:

 The cat starts in the lower left corner of the stage.

12

 Pressing the arrow keys moves the cat.

 If the cat touches the edge or a red line, it goes back to the lower left corner.

In addition to the blocks you already know, you will need the touching ? and touching color ?

blocks from the Sensing menu. To use the touching ? block, select edge from the drop-down list. To

use the touching color ? block, click on the color in the block, then click on the red in the maze. The

color in the block should turn red.

For extra credit, play a sound when the sprite reaches the lower right corner of the maze.

13

Chapter 3: Messages

In this chapter, you will learn to use messages, which are used to communicate between scripts and

between sprites.

Lesson 3-1: Sending and Receiving Messages

Program Name: Taking Turns

1. Create a new project and name it Taking Turns.

2. Right-click Sprite1 in the sprite list and select duplicate. This will make a copy of Sprite1 named

Sprite2.

3. Create a script for Sprite1 that broadcasts the message sprite 1’s turn when the program starts. You

will need the broadcast block in the Events menu. To create your message, click the drop-down list,

select new message..., and type sprite 1’s turn. Your block should look like this:

4. Drag a when I receive block to the scripts area and set the value to sprite 1’s turn:

5. Add blocks to the when I receive script to glide to a random position, then broadcast a new message

named sprite 2’s turn. You will need the glide 1 secs to x: y: block from the Motion menu, two pick

random 1 to 10 blocks from the Operators menu, and a broadcast block. Use the random blocks to

choose an x value between –240 and 240 and a y value between –180 and 180.

6. Click Sprite2. Create a script to receive the message sprite 2’s turn, glide to the position of Sprite1,

and broadcast the message sprite 1’s turn. To determine the position of Sprite1, use

 __ of __ blocks from the Sensing menu, set as follows:

7. Run your program. Sprite1 should glide to a random position on the stage; Sprite2 should glide to

Sprite1’s position; Sprite1 should glide to a new position; and so on.

Let’s see what’s happening:

a) When the program starts, Sprite1 broadcasts the message sprite 1’s turn.

A message is like yelling into a crowd of people, “Who is supposed to wash the dishes?”

Everybody can hear it, but only those people (sprites) who have been told they are on dish duty

(have a when I receive block for the dish duty message) will respond. This could be zero, one,

many, or all people (sprites).

b) Because Sprite1 has a when I receive block for the message sprite 1’s turn, it executes the script

for that message. In this case, it randomly picks an x value between –240 and +240 and a y value

between –180 and +180, then glides to the new position. After gliding, it broadcasts the message

sprite 2’s turn.

14

c) Because Sprite2 has a when I receive block for the message sprite 2’s turn, it executes the script

for that message. In this case, it finds the x and y coordinates of Sprite1, glides to that position,

and broadcasts the message sprite 1’s turn, starting the cycle all over again.

Lesson 3-2: Message Practice

Program Name: Simon Says

A common use of messages is to choreograph animation sequences, where two or more sprites take

turns doing something.

Use messages to animate a short game of Simon Says between three sprites: the game leader and two

game players. For example, the leader might say, “Simon says jump” and both players jump. Or the

leader might say, “Turn around!” and one player turns slightly but catches itself and the leader says,

“Almost got you.” The game should end with one player winning.

Use the say ____ for __ secs block in the Looks menu to have sprites say things. Depending on how you

structure your code, you might also want to use the broadcast ____ and wait block in the Events menu.

The broadcast ____ and wait block waits until all sprites have finished processing a message before

passing control to the next block; the broadcast ____ block passes control immediately to the next

block.

15

Chapter 4: Animation

Lesson 4-1: Bitmap Mode

Before learning animation, you need to learn about two different ways to draw with a computer: bitmap

drawing and vector drawing. In this lesson, you will learn about bitmap drawing.

1. Create a new project and name it Bitmap vs. Vector.

2. Click the Costumes tab and click Clear to delete the cat.

3. Look in the lower right hand corner and make sure you are in Bitmap Mode. If you are not in Bitmap

Mode, click Convert to bitmap.

4. Using the line tool, draw an X with a short and a long arm:

5. Now suppose you want to rotate the short line while keeping the long line in place. Using the Select

tool, select the short line:

6. Using the rotation handle (the circle at the top of the line coming out of the selection box), rotate the

short line:

What happened? Both the short line and a segment of the long line in the selection box rotated. This is

because you didn’t actually select just the short line, you selected everything in the selection box.

In bitmap mode, the computer does not understand what a line is. Instead, it just stores a grid of dots.

For example, this is what the computer stores for a short line:

(Actually, the computer stores a grid of numbers, where each number tells the computer what color to

draw each dot in the grid. But it’s easier to think of the computer as just storing a grid of dots.)

Because the computer just stores dots, it doesn’t understand anything about those dots. That is, it doesn’t

realize that the grid shown above is a line, or that a different grid might show a circle or a triangle. All it

sees are dots.

As a result, when you use the select tool, you can’t select a particular line in the grid. You can only

select the dots in the grid. And when you rotate the grid, you rotate all of the dots in the grid.

16

Lesson 4-2: Vector Mode

In the lesson 4-1, you learned about bitmap drawing. In this lesson, you will learn about vector drawing:

1. Click Costume2, clear the canvas, and check that you are in Vector Mode. If you are not in Vector

Mode, click Convert to vector.

2. Using the line tool, draw the same lopsided X you drew in the previous lesson.

3. Using the select tool, select the shorter line and rotate it:

What happened? This time, only the shorter line rotated. The reason for this is the difference between

vector graphics and bitmap graphics. In vector graphics, the computer does not store a grid of bits.

Instead, it stores information about the actual objects you draw.

For example, for a line, it stores the endpoints of the line, as well as the fact that you are drawing a line.

For a circle, it stores the center and radius of the circle, and the fact that you are drawing a circle.

Because vector graphics store information about individual objects — as opposed to a grid of dots —

you can select, rotate, move, and resize individual objects without affecting other objects, even if the

objects overlap.

In general, you will use vector graphics. Bitmap graphics are useful when creating objects that can’t

easily be described by equations, such as the cat sprite or a photograph. However, they are more difficult

to work with and this class is about writing programs, not drawing pictures.

Lesson 4-3: Drawing Costumes

Program Name: Hiding Man

Sprites can have different costumes, or graphics, for different actions. For example, a sprite might use

different costumes for walking, running, and jumping. In this lesson, you will draw four costumes.

1. Create a new project and name it Hiding Man.

2. Click the blue i in the upper left corner of the sprite icon, rename the sprite Hiding Man, and click

the blue triangle to return to the sprite icon.

17

3. Click the Costumes tab, clear the canvas, make sure you are in Vector Mode, and use the line and

oval tools to draw a simple stick figure of a man walking. Make sure you use separate lines for the

body, arms, and legs. This is because we need to reposition the arms and legs later.

Don’t spend too much time drawing. We’re learning programming, not fine art.

4. Using the Set costume center tool (the plus sign in the upper right corner of the screen), set the

center of the costume to a point on the “ground” just beneath the man’s feet:

A costume’s center is used for movement and rotation. When you tell a sprite to go to a certain

point, its center goes to that point. When you tell a sprite to rotate, it rotates around its center.

5. Click costume2 and delete it, then make two copies of costume1. You can use the stamp tool at the

top of the screen, or right click and select duplicate.

6. Click costume2 and use the zoom controls — the plus and minus in the lower right corner of the

screen — to zoom in on your stick man. Rotate and move his arms and legs:

7. Click costume3 and move the arms and legs again:

8. Finally, click costume2 and duplicate it. You should now have four costumes, with costume2 and

costume 4 being identical:

18

Lesson 4-4: Simple Animation

Program Name: Hiding Man (continued)

Now it’s time to make your man walk.

1. Click the Scripts tab and create a script that changes to the next costume forever. You will need the

next costume block in the Looks menu:

2. Run your program and watch your man walk in place. If he’s moving too fast, you can add a wait

block after each costume change.

3. After you’re done, delete your forever block. We just used it to show you how animation works.

Lesson 4-5: Moving from the Background to the Foreground

Program Name: Hiding Man (continued)

In this lesson, you will make your man walk from the background to the foreground.

1. Create a script to move your man to (–200, 150) and set it to a smaller size using the set size to %

block in the Looks menu. After running this script, your stage should look like this:

2. Add a repeat loop to do the following:

 Go to the next costume.

 Increase the size. (Use the change size by block in the Looks menu.)

 Pause.

 Change x by 10.

 Change y by –5.

When you run your script, your man should appear to walk from the left background to the right

middle ground. After running the script, your stage should look like this:

19

You will need to play with the number of repetitions, the pause time, and the amount you change the

size by to get this to look right.

Lesson 4-6: Layers

Program Name: Hiding Man (continued)

Now it’s time for hiding man to hide.

1. Create a new sprite using the Paint new sprite tool and name it Tree.

2. Draw a simple lollipop tree and move it so that it hides the Hiding Man sprite:

Notice that the Tree sprite covers the Hiding Man sprite. This is because of something called layers.

Each sprite has its own layer and the layers are placed in a stack. It’s easiest to think of painting each

sprite on its own sheet of clear plastic (layer). When you place the sheets in a stack, you will only see

those sprites (or parts of sprites) that are not covered by a sprite higher in the stack.

To see layers in action, go to the Looks menu and click the go back 1 layers and go to front blocks.

These will move the tree behind the man and back in front of the man. Although we won’t use these

blocks in this program, you should know they exist.

Lesson 4-7: Flipping Costumes

Program Name: Hiding Man (continued)

In this lesson, you will create another stick figure that walks from left to right.

1. Using right-click/duplicate or the stamp tool, create a copy of the Hiding Man sprite and name it

Walking Man.

20

2. In each of Walking Man’s costumes, select the entire costume and flip it using the Flip left-right

tool:

3. Change the script so that the Walking Man sprite walks horizontally from right to left across the

screen, from (250, –140) to (–250, –140):

Lesson 4-7: Coordinating Movements

Program Name: Hiding Man (continued)

In this lesson, you will coordinate the movements of Hiding Man and Walking Man.

1. At the end of Hiding Man’s script, broadcast a message that tells Walking Man it is time to walk.

2. Modify the scripts for Walking Man, so that (a) when the program starts, he hides, and (b) when he

receives the message from Hiding Man, he shows himself, walks across the stage, hides again, and

broadcasts a message to Hiding Man that it is time to run.

3. Add a new script to Hiding Man. When he receives the message from Walking Man, he should

scream (find a good sound), run (move faster than before), and grow larger until he moves off the

right edge of the stage, at which point he hides.

4. Run your program. You should see the following series of events:

a) Hiding Man walks from the upper left corner of the stage to behind the tree.

b) Walking Man appears, walks from right to left across the bottom of the stage, and disappears.

c) Hiding Man screams and runs from behind the tree off the lower right corner of the stage.

21

Chapter 5: Practice, practice, practice!

Now it’s time to practice what you’ve learned.

IMPORTANT: KEEP YOUR GRAPHICS SIMPLE! Don’t spend more than two or three minutes

drawing pictures. Spend your time writing scripts.

Lesson 5-1: Catch

Program Name: Catch

Two people throw a ball back and forth. Forever. Hints:

 Use three sprites: two people and a ball.

 Use forever, point in direction, repeat until, touching, and

move 10 steps.

Lesson 5-2: Fleas

Program Name: Fleas

Create a simple animation where a dog walks across the stage.

Halfway across, it scratches itself, then continues walking. Hints:

 Use one sprite — the dog — with four costumes, two for

walking and two for scratching.

Lesson 5-3: Archery

Program Name: Archery

Create a simple game where you aim an arrow at a target and shoot

it. Hints:

 Start the arrow on the left side of the stage and pick its y value

as a random number between –150 and +150.

 Use the up and down arrow keys to aim (rotate) the arrow.

 Use the space key to shoot the arrow.

 Use the n key to start a new arrow.

 Stop the arrow when it touches the target or an edge. Use the repeat until ___ block for this.

22

Lesson 5-4: Auto-mazeing

Program Name: Auto-mazeing

Create a sprite that can find its own way through a maze. Hints:

 Draw a simple maze in red and an arrow sprite to go through

the maze.

 Write a script to move through the maze, starting from the

lower left corner. The script should use knowledge of the shape

of the maze and use as few commands as possible.

Lesson 5-4: Auto-Randomazeing (Optional)

Program Name: Auto-Randomazeing

Make a copy of Auto-mazeing and name it Auto-Randomazeing.

Modify it so the arrow moves through the maze by trial and error.

For example, when the arrow touches an edge or a wall, it changes

direction. Hint:

 After the sprite touches a wall, back up before changing

direction. This will keep the sprite from immediately touching

the wall again.

Lesson 5-6: Pong (Optional)

Program Name: Pong

Create a simple version of Pong, the world’s first video game.

Hints:

 Use three sprites: one for the ball and one for each paddle.

 The right-hand player uses the up and down arrow keys to

move their paddle. The left-hand player uses the w and s keys.

 Draw vertical red lines on the far right and far left sides of the stage. If the ball touches either of

these lines, the player is out and the other player serves.

 Pick a random number between 45 and 135 to set the initial direction of the ball when serving to the

right. Pick a number between 225 and 315 when serving to the left.

 To calculate the direction after the ball hits a wall or a paddle, use the formulas:

o For the top and bottom walls: new direction = 180 – current direction

o For the paddles: new direction = 360 – current direction

To get the current direction, use the direction block in the Motion menu.

23

Chapter 6: Variables

Variables in computing are used to store values. You have already seen some variables. For example, in

the Back and Forth project, you used the variable to determine if the sprite was near an edge.

In Taking Turns, you used the and variables so that Sprite2

could go to the position of Sprite1.

 , , and are examples of variables maintained by

Scratch. That is, Scratch stores values in these variables and you can use those values in your programs.

You can also define your own variables and store values in them. For example, you could use variables

to store scores in a game, store the speed of a meteor crashing to earth (so you know how big a hole to

draw when it hits), or calculate the value of y in the equation y = 3x + 10 for a given value of x.

Lesson 6-1: Numeric Variables

Program Name: Plus 2

In this lesson, the user enters a number and the program displays that number plus, minus, and times 2.

1. Create a new project and name it Plus 2.

2. On the Data menu, click Make a Variable. Name the variable number and click For this sprite only,

then click OK.

Variables can be shared by all sprites or used only by one sprite. is an example of a

variable used by only one sprite: it gives the current x position of that sprite. Other sprites have their

own copies of this variable. is an example of a variable shared by all sprites —

any sprite can use it.

Variables that can be used only by one sprite are called local variables. Variables that can be used

by all sprites are called global variables. As a general rule, you should use local variables.

3. When the program starts, use ask _______ and wait in the Sensing menu to ask for a number:

4. Scratch stores the number entered by the user in the answer variable from the Sensing menu. Use

the set ______ to ____ block in the Data menu to store the answer in your number variable:

This is called setting a variable and is a very common thing to do.

5. Now create a local variable called plus2 and set it to the sum of number and 2, using the + operator

from the Operators menu:

6. To show the user what their number plus 2 is, use the say ____ for 2 secs block in the Looks menu:

24

7. Run your program, enter a number, and check that the program displays the correct answer.

8. Create local variables to hold the value of the number minus 2 and times 2, set these variables, and

display their values. (Note that the multiplication operator uses an asterisk. This is because the letter

x is commonly used as a variable name; it would be confusing if it also meant multiplication.)

9. Test your program to make sure it displays the correct values.

It is important to understand that this is a program you could not have written without variables. Because

you did not know what number the user was going to enter, you could not have computed the value of

that number plus, minus, and times 2 without using a variable.

Lesson 6-2: String Variables

Program Name: Plus 2 (continued)

In the previous lesson, you just displayed the user’s number plus, minus, and times 2. It would be nice to

give the user more information. For example:

In fact, this is easy to do.

In the previous lesson, your variables held numbers. Variables can also hold strings. A string is a

sequence of characters and/or symbols, such as “Your number plus 2 is: 7”, “abc123”, and “Bob the

Armadillo”.

1. Create a new local variable called output.

2. After you set the plus2 variable to number + 2, use the join operator in the Operators menu to set

the output variable:

The join operator takes two strings and joins them together. In this case, you are joining the string

“Your number plus 2 is: ” and the value of the plus2 variable.

3. Change your say plus2 for 2 secs block to use the output variable:

4. Run your program and check that it works correctly.

5. Modify your program to use the output variable to display the values of the input number minus 2

and times 2.

Lesson 6-3: Guessing Game

Program Name: Guessing

Write a program that randomly chooses a number between 1 and 100. Ask the user to guess the number

and tell the user if their guess is correct, too big, or too small. After the user guesses the correct number,

display the number of guesses they made.

25

Lesson 6-4: Displaying Accuracy in Archery

Program Name: Archery (continued)

You may have noticed in the previous lessons that the values of variables were displayed on the stage.

This is useful for checking variable values as a program runs. It can also be used for things like

displaying scores in a game. (If you don’t want to display a variable’s value, uncheck the box next to the

variable in the Data menu.)

In this lesson, you will use variables to display your accuracy in the archery game.

1. Reopen your archery game.

2. Create local variables for the number of shots, the number of hits, and the accuracy (percentage of

hits). Only display the accuracy.

3. At the start of the game, initialize the variables.

4. After each shot:

a) Add 1 to the number of shots with the change ____ by 1 block in the Data menu.

b) If the arrow hits the target, add 1 to the number of hits.

c) Calculate the accuracy from the number of hits and number of shots.

5. Test your program by deliberately hitting and missing the target and making sure that the calculated

accuracy is correct.

Lesson 6-5: Displaying Scores in Pong

Program Name: Pong (continued)

In this lesson, you will use variables to display scores in Pong. If you did not create a Pong game, you

can skip this lesson.

1. Reopen your Pong game and create variables for the left and right players’ scores.

2. At the start of the game, initialize the variables.

3. When the ball touches the red line on the right, add 1 to the left player’s score. When the ball

touches the red line on the left, add 1 to the right player’s score.

4. When one player reaches 15, use the stop all block in the Control menu to stop the game. For extra

credit, don’t stop until a player wins by at least two points.

Lesson 6-6: Graphing a Line

Program Name: Line

In this lesson, you will use x and y variables to graph the following equation:

y = 3x + 10

To start, select a value for x, calculate the corresponding value for y, and move to the point (x, y). This

will be your starting point. Next, use a loop to repeatedly add a value to x, calculate a new y, and draw a

line to the new point.

1. Create a new project and name it Line.

26

2. Change the costume of Sprite1 to a small circle and then draw horizontal and vertical lines through

the point (0, 0). You can either create a Graph sprite whose costume has these lines or draw them on

the backdrop for the stage. Your stage should look like this:

3. On Sprite1, create local variables named x and y.

4. Make Sprite1 go to the starting point on the line. This has three steps:

a) Set the value of x to –60.

Setting the value of a variable for the first time is called initializing the variable. It is very

important: If you don’t initialize a variable, the computer doesn’t know what value to use when

you use that variable. Not initializing variables is the cause of many bugs.

b) Set y to (x * 3) + 10. When you do this, make sure that you multiply x by 3 before adding 10. It’s

a bit hard to see, but be sure to use:

and not:

This is important, as the first expression multiplies x by 3 and then adds 10 to the result — that

is, (3 * x) + 10 — while the second expression adds x to 10 and multiplies the result by 3 — that

is 3 * (x + 10).

c) Go to the newly calculated point (x, y):

5. Add the following blocks from the Pen menu to your script:

These blocks clear (erase) any previous drawing, change the pen color to blue (it doesn’t actually

matter what color you use), and put the pen “down” — that is, get the pen ready to draw.

27

6. Now you’re ready to draw our graph. Inside a loop that repeats 11 times, do the following:

a) Use the change x by 10 block from the Data menu to increment (add to) the value of x:

Changing the value of a variable by a fixed amount is called incrementing the variable and is a

very common thing to do in computer programming. For example, when you added 1 to the

score in your archery and Pong games, you were incrementing the score.

b) Set the value of y using the same calculation you used above.

c) Go to the new point (x, y). Because the pen is “down”, your program will draw a line from the

previous point to the new point.

7. After the loop, use the pen up block from the Pen menu to lift the pen off the stage.

8. Run the program and watch Sprite1 graph the equation y = 3x + 10.

It is important to understand what is happening here.

If you just wanted to draw the line y = 3x + 10, you could have calculated the starting and ending points

on paper, and created a script to go to the starting point and draw a line to the ending point. This works

fine for a line, but what if you wanted to draw a curve? You would need to calculate many points on the

curve and would need a separate block to go to each point. That’s a lot of work and a lot of blocks.

By using variables, you can write your equation in the script and let the computer calculate the values of

y for many different values of x. You also only need two go to blocks — one to go to the first point and

one to go to all of the other points. Furthermore, you could graph an entirely different equation just by

changing the equation in the script. You could even let the user enter an equation and evaluate it at run

time; this is how graphing calculators work.

Using variables in this way is the basis for virtually all computer programs.

Lesson 6-7: Practice Graphing

Program Name: Parabola

1. Use File/Save as a copy to save a copy of your Line program and name it Parabola.

2. Modify your script so that the program graphs the equation:

28

instead of y = 3x + 10. You will need to experiment with the initial value of x, the number of

repetitions, and the amount by which x is incremented to draw a smooth curve that doesn’t go off the

edge of the stage.

Lesson 6-8: Rotten Tomatoes

Program Name: Rotten Tomatoes

The equation in the previous lesson was a simple form of a parabola. Parabolas are very useful

equations, as they tell us the trajectories of things that are hurled through the air, like baseballs, rocks,

and rotten tomatoes.

1. Create a new project and name it Rotten Tomatoes.

2. Change the costumes of Sprite1 to a tomato (red circle) and a splattered tomato (red blob). To create

the splattered tomato, first draw a red circle and then use the Reshape tool — you are in Vector

Mode, aren’t you? — to distort it.

3. Use the following equation to hurl your tomato across the stage:

4. When it reaches the end of its flight, use the second costume to make it go splat.

5. Splat away.

Lesson 6-9: Dripping Rotten Tomatoes (Optional)

Program Name: Rotting Tomatoes (continued)

Have some time on your hands? Here’s a challenge: make your rotten tomato drip rotten tomato juice as

it flies through the air.

1. Add a sprite named Drip to your Rotten Tomatoes project. This should have two costumes: a small,

red drip and a small, red splat.

2. Inside the loop that hurls your tomato through the air, add a create clone of Drip block from the

Control menu. Do this right after the go to block that moves the tomato to its new position. The

create clone block creates a clone of the Drip sprite. Because the loop repeats many times, we will

have many clones.

3. Add a script to the Drip sprite to hide itself when the program starts.

4. Add a second script to the Drip sprite to do the following when the sprite starts as a clone. (Use the

when I start as a clone block from the Control menu.) You will need to create a number of variables

to do this.

a) Find and save the initial position of the clone. This will be the current position of the tomato.

b) Make the Drip clone go to this position and show itself.

c) Use a loop to fall to the ground. The x value will always be the same because the drip is falling in

a vertical line. Calculate the y value using the equation y = initial_y_value – 16t
2
, where t is the

time in seconds. The loop should stop when the y value is less than 0.

d) When the drip clone hits the ground, it should splat.

5. Enjoy the mess.

29

Chapter 7: Algorithms

Most computer programs use algorithms, which are a set of instructions designed to complete a certain

task, such as tracking the flight of a rotten tomato through the air.

It is usually a good idea to think of your algorithm before you start writing your program. For example,

the algorithm for graphing the points on the line y = 3x + 10 is:

pick a starting value for x

calculate a corresponding value for y using the equation y = 3x + 10

go to (x,y)

repeat some number of times:

increment x

calculate y

go to (x,y)

In this chapter, you will practice thinking of and programming algorithms.

Lesson 7-1: Sum of the Numbers 1 to n

Program Name: Sum 1 to n

Suppose someone asked you what the sum of the numbers from 1 to 3 is. Pretty easy: 1 + 2 + 3 equals 6.

The sum of the numbers from 1 to 6? A bit harder: 1 + 2 + 3 + 4 + 5 + 6 equals 21. From 1 to 52? Time

to write a program.

1. Create a new program and name it Sum 1 to n.

2. Create local variables named number, total, and lastValue.

3. Ask the user for a number and set lastValue to that number.

4. Initialize number to 1 and total to 0.

5. Add the following repeat until loop to your script:

This loop adds the numbers from 1 to the number entered by the user. It is important to understand

how it works.

Remember that we already set lastValue to the number entered by the user and initialized number to

1 and total to 0. Suppose the user entered the number 3.

The first time through the loop, number (1) is less than lastValue (3), so we go inside the loop.

 The first block in the loop sets the new value of total to the old value of total (0) plus number

(1). Thus, the new value of total is 0 + 1 = 1.

 The second block in the loop changes the value of number by 1. That is, it adds 1 to the current

value of number. Since the current value of number is 1, the new value is 1 + 1 = 2.

Changing the value of a variable by a fixed amount is called incrementing the variable. It is a

very common operation in loops.

30

The second time through the loop, number (2) is still less than lastValue (3), so we go inside. This

time, total is set to 1 (old value) + 2 (number) = 3 and number is incremented to 3.

The third time through the loop, number (3) is equal to lastValue (3), so we go inside. total is set to

3 (old value) + 3 (number) = 6 and number is incremented to 4.

The fourth time through the loop, number (3) is greater than lastValue (3), so we stop.

6. Add blocks to display the output using the string “The sum of the numbers from 1 to n is: m”, where

n is the number entered by the user and m is the total.

7. Test your program.

Lesson 7-2: Sum of the Even/Odd Numbers 1 to n

Program Name: Sum 1 to n Even/Odd

Now that you’ve seen how to use a loop and variables together, write a program to ask the user for a

number (n) and display the sum of the odd numbers from 1 to n, as well as the sum of the even numbers

from 2 to n. For example, if the user entered the number 6, your program would display 9 (which is

equal to 1 + 3 + 5) and 12 (which is equal to 2 + 4 + 6).

Lesson 7-3: Formula for the Sum of the Numbers 1 to n

Program Name: Sum 1 to n Formula

It turns out that there is a formula for finding the sum of the numbers from 1 to n:

sum of numbers from 1 to n = n (n + 1) / 2

Write a program to ask the user for a number and use this formula to calculate and display the sum of

the numbers from 1 to the number entered by the user.

Lesson 7-4: Fibonacci Numbers

Program Name: Fibonacci

Leonardo Bonacci (c. 1170 – c. 1250), also known as Fibonacci, was an Italian mathematician who

popularized the use of Arab numerals — the kind we use today — in Europe. He also rediscovered or

introduced (it is not clear which) the sequence of numbers that bears his name:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ...

The sequence is calculated by starting with 0, 1 and then calculating the next number in the sequence by

adding the previous two numbers. Thus, the third number is 0 + 1 = 1, the fourth number is 1 + 1 = 2,

the fifth number is 1 + 2 = 3, the sixth number is 2 + 3 = 5, and so on.

The pattern described by Fibonacci numbers occurs in many places in nature, such as the scales on a

pine cone and the shape of a fern as it uncurls.

Write a program that generates and displays the first 15 Fibonacci numbers. For extra credit, let the user

decide how many Fibonacci numbers to generate and display.

31

Lesson 7-5: Sorting (Optional)

Program Name: Sorting

In computer programming, a list is a kind of variable that can store as many values as you want. The

values are stored in specific positions in the list. For example, in the following list, 3 is stored in the first

position, 5 is stored in the second position, 2 is stored in the third position, and so on.

3, 5, 2, 17, 1

You can insert, delete, or replace values in the list. For example, if you insert the number 43 in the

second position in the list, the list becomes:

3, 43, 5, 2, 17, 1

If you then delete the fourth value in the list, the list becomes:

3, 43, 5, 17, 1

And if you then replace the fifth value in the list with 99, the list becomes:

3, 43, 5, 17, 99

You can create a list with the Make a List button on the Data menu. After you create a list, the Data

menu contains blocks for working with lists. (Note: To delete all of the values in the list, use the delete

__ of ___ block and set the entry number to all.)

Write a program that randomly generates 10 numbers between 0 and 100, stores these in a list, and then

sorts them from lowest to highest.

32

33

Chapter 8: Program Structure

Most of the programs you have created so far have contained a single script. In complex programs, a

single script has two significant problems:

 Lack of readability. In a single, long script, it is difficult to understand the overall flow of a

program because you get lost reading all the details.

 Lack of flexibility. In a single, long script, it is difficult to modify, rearrange, or reuse parts of the

script.

In this chapter, you will see how to add structure to a program through the use of messages and More

blocks, which are blocks you define yourself.

Lesson 8-1: A Single, Long Script

Program Name: Walk, Jump, Spin

Write a program that uses a single script to:

1. Start on the left side of the stage.

2. Walk 200 steps, moving 10 steps at a time.

3. Jump 25 steps high (and fall back down) three times.

4. Turn around and walk back 100 steps, moving 10 steps at a time.

5. Spin around twice.

6. Turn around and walk 500 steps, moving 10 steps at a time.

Lesson 8-2: Adding Structure with Messages

Program Name: Walk, Jump, Spin (continued)

In the previous lesson, you probably wrote a script that looks something like this:

34

At a glance, it’s pretty difficult to see what is happening. This is because the script is a single, long set of

commands with no structure. In computer programming, this is known as spaghetti code and, much as

you might like spaghetti, it’s not a good thing. In addition to being difficult to read, spaghetti code is

hard to rearrange (for example, spinning first and jumping second) and to change (for example, adding a

second group of five jumps).

To fix this, replace each set of actions — initialize, walk, jump, walk, spin, walk — with a message and

another script. For example, replace the loop to jump three times with this broadcast ___ and wait

block:

and this when I receive ___ script:

Notice that this uses broadcast ___ and wait and not broadcast ___. This is because a broadcast block

without the wait passes control immediately to the next block; it does not wait for any scripts that

receive the message to finish. For example, these messages make the sprite jump and then spin:

while these messages make the sprite jump and spin at (almost) the same time:

1. Replace each of the actions in your script — initialize, walk 200 steps, jump 3 times, walk 100 steps,

spin twice, walk 500 steps — with a broadcast-and-wait block and a script.

35

Lesson 8-3: More Blocks

Program Name: Walk, Jump, Spin (continued)

Your main script now looks something like this:

This is much better, as it is easy to see what is happening. It would also be easy to rearrange the order in

which things occur.

One problem is that there are three different messages for walking, depending on how far the sprite

walks. To fix this, use a More block, which is a block you define yourself. (The name More block comes

from the fact that you are defining more blocks. In most programming languages, these are known as

functions.)

1. In the More Blocks menu, click Make a Block and then click Options:

2. In the purple block, type walk. This is the label on the block, like “move” on a move ___ steps block.

36

3. Click Add number input and change the label of the number input to number_of_times. This adds a

parameter to the block, allowing you to send a value to the block. A parameter is a variable used in a

More block. In this case, the parameter specifies the number of sets of 10 steps to walk.

4. Click Add label text. This adds another label to the block. Type times.

5. Click OK. This creates a walk __ times block in the More Blocks menu and a define walk

number_of_times times block in the scripts area. You will use the walk __ times block in your script

to walk, and the define walk number_of_times times block to define what the walk __ times block

actually does.

37

6. Beneath the define walk number_of_times times block, add a repeat loop. Inside the repeat loop,

place a move 10 steps block. Drag the number_of_times variable from the define block to the space

that tells the repeat loop how many times to repeat:

7. In your main script, replace the first broadcast-and-wait block with a walk ___ times block and set

the value to 20:

8. Replace the other broadcast-and-wait blocks that send walk messages with walk __ times blocks.

9. Run your program.

It is important to understand what is happening here. When the walk __ times block is executed:

a) The calling script specifies the number of times to walk. For example, it is 20 the first time the

walk __ times block is used.

b) Scratch sets the number_of_times parameter to the value used in the block.

c) The loop in the walk __ times block executes the move 10 steps block number_of_times times.

Most programs are written this way, with a main set of commands calling functions — More blocks,

in our case — to do most of the work. In complex programs, functions commonly call other

functions. You can do this in Scratch, too: The definition of a More block can include More blocks.

Lesson 8-4: More Block Practice

Program Name: Walk, Jump, Spin (continued)

1. Replace the message to spin with a More block that allows you to specify how many times you want

to spin.

2. Replace the message to jump with a More block that allows you to specify (a) how many times you

want to jump and (b) how high to jump.

3. Replace the point in direction __ blocks with a More block that figures out the current direction and

changes it by 180º.

4. Test your program.

38

Lesson 8-5: Messages vs. More Blocks

One question that might have occurred to you by now is when to use messages and when to use More

blocks. In some cases, the choice is clear:

 Use More blocks when you need to pass different values to a script. For example, your script draws

a line between two points you pass or makes a sprite jump in a parabola whose height you pass.

 Use messages when you need to tell more than one sprite to do something. (More blocks can only be

used in the sprite they were created in.)

 Use messages — in particular, use broadcast message blocks — when you want things to happen

simultaneously, such as spinning and moving at the same time. Scripts wait until More blocks (and

broadcast message and wait blocks) finish before executing the next block. They continue

immediately after executing a broadcast message block.

In other cases, you can use either More blocks or messages but one feels more appropriate:

 Use More blocks for “utility” routines that can be used from many different places in your project.

For example, you used a More block in three different places to tell your sprite to walk.

 Use messages to control the flow of your project. For example, you used a message to initialize your

program.

Lesson 8-6: Return Values

Program Name: Line (continued)

In most computer programming languages, functions can return a value. For example, functions might:

 Return the value of y in the equation y = 3x + 10 for a given value of x.

 Return “e” or “o” depending on whether a number is even or odd.

 Return the distance between two sprites.

 Return the next number in a Fibonacci sequence given the previous two numbers.

In this exercise, you will use a More block to return a y value for a particular x value. That is, the More

block will set the value of the y variable, which can then be used by the calling script.

1. Reopen the Line program.

2. Create a More block that accepts an x value and calculates the value of 3x + 10. It then sets the y

variable to the calculated value.

3. Replace the two blocks that currently set the y value with your new More block.

4. Test your program.

This may not seem like a very exciting change, but having a single copy of the code — that is, placing

the calculation in a More block — has some important advantages:

 There is less code because multiple identical calculations are replaced with a single More block.

 There is no chance that the calculation is written differently in different places.

 It is easier to change the code because there is a single copy of it.

Obviously, these advantages increase with the size of the script defining the More block.

39

Lesson 8-7: Return Value Practice

Program Name: Run Away

The distance between a point (x1, y1) and a point (x2, y2) is:

square root of ((x1 – x2)
2
 + (y1 – y2)

2
)

Create a program with two sprites. The sprites are identical except that one starts on the left side of the

screen and walks right and the other starts on the right side of the screen and walks left. The two sprites

should walk until they are within 60 steps of each other, at which point they turn around and run back to

the edge.

Use a More block to calculate and return the distance between the two sprites.

Lesson 8-8: Structure Practice

Program Name: Pong (continued)

Reopen your Pong program and use messages and structures to convert it from spaghetti code to a well-

structured program.

Lesson 8-9: Recursive Functions

Program Name: Spiral

One of the things that a function can do is call itself. This is called recursion and a function used this

way is called a recursive function. Recursion is useful in problems that repeat themselves, using the

current state as input for the next state.

For example, suppose we want to draw a spiral. We start in the center of the stage, pick an initial

direction and length, and draw a line for the chosen direction and length. We then decrease the angle by

a fixed amount (for example, 1º) and increase the length by a fixed amount (for example, 1 step) and

draw again. We continue until we hit the edge of the page.

Drawing a spiral is a recursive problem because the length and direction of the next segment depend on

the length and direction of the current segment. This is different than drawing a square, where all sides

have the same length and you always turn 90º before drawing the next side.

1. Create a new project and name it Spiral.

2. Create a More block that takes the following input:

 length

 direction

 change length by

 change direction by

3. In the definition of the More block, set the direction to the input direction and move length steps. If

the sprite is not touching the edge, call the More block using the following values:

 length + change length by

 direction – change direction by

 change length by

 change direction by

4. When the program starts, go to (0, 0), put the pen down, and call the More block. You will need to

play with the input values to find values that draw a nice spiral.

40

One thing that is important in writing recursive functions is to have a stopping condition. That is, the

function needs to decide to stop sometime. Otherwise, it will keep calling itself forever. In this case, the

spiral stops when it touches the edge.

Lesson 8-10: Recursive Function Practice

Program Name: Sum 1 to n Recursive

Summing up the numbers from 1 to n is a recursive problem. This is because each sum depends on the

next lower sum. That is, sum(1 to n) = n + sum(1 to n – 1), sum(1 to n – 1) = n – 1 + sum(1 to n – 2)

and so on, until you reach sum(1 to 1), which is 1.

1. Create a new project and name it Sum 1 to n Recursive.

2. Create a More block that accepts a single number, n. Also create a local variable named sum.

3. The More block checks if n is 1. If n is 1, the block sets sum to 1. If n is not 1, the block recursively

calls itself with an input value of n – 1; it then sets sum to n + sum.

4. Ask the user for a value of n, then call the More block with that value of n and display the sum.

5. Test your program.

Lesson 8-11: More Recursive Function Practice

Program Name: Recursive Tree

A tree has a recursive structure. A single trunk comes up and forks into shorter branches, which fork into

even shorter branches, which fork into ... you get the idea.

Write a recursive More block to draw a branch. The block has four parameters: length, direction, level,

and limit. It does the following:

a) Draw a line of length steps in the direction direction.

b) If level is less than limit, call itself recursively three times:

 length is 2/3 the current length

 direction is randomly chosen between direction – 90 and direction + 90

 level is the current level plus 1

 limit is the current limit

c) Reverse direction and move back to the start of the branch.

The limit and level parameters are used to stop the recursion. The limit parameter is the number of times

the block should call itself. It is set on the first call and is always the same. The level parameter tracks

the current level. It is set to 1 on the first call and the current level plus 1 on subsequent calls. The block

only calls itself recursively if level is less than limit.

Use the More block to draw a tree. You will need to play with the initial parameters to figure out what

makes a good tree. Do not set the limit above 6 unless you want to wait a long time. Here is a tree drawn

with a limit of 5:

41

Chapter 9: Advanced Programs

In this chapter, you will practice more complicated programs. Use More blocks and messages to break

your program into more manageable pieces. For example, most of these programs need a More block

that can determine if a number is prime.

Lesson 9-1: Prime Numbers

Program Name: Primes

Write a program that asks the user for a number and determines whether it is prime. For extra credit:

 Ask the user how many prime numbers they want. Generate the first n prime numbers, where n is the

number the user asked for.

 Ask the user for a number and generate all primes less than or equal to that number.

Lesson 9-2: Greatest Common Factor

Program Name: Greatest Common Factor

Write a program that asks the user for two numbers and then calculates and displays their greatest

common factor.

Lesson 9-3: Least Common Multiple

Program Name: Least Common Multiple

Write a program that asks the user for two numbers and then calculates their least common multiple.

Lesson 9-4: Least Common Denominator

Program Name: Least Common Denominator

Write a program that asks the user for two numbers and then calculates their least common denominator.

Lesson 9-5: Tic-Tac-Toe

Program Name: Tic-Tac-Toe

Write a program that allows two people to play tic-tac-toe.

42

43

Chapter 10: Project

The final four class sessions will be used to create a project of your own design. You will spend half a

class designing your project and 3 1/2 classes writing it. In the final class, everybody will present their

project to the class.

Your design should include:

 A summary of your project. For example, “My project tells the story of Hansel and Gretel” or “My

project is a game where Mervin the Cucumber runs through the forest and fights vegetables.”

 Sketches of the background and sprites in your project and how they fit together.

 Descriptions of what the sprites do and how they interact. For example:

o “Hansel, Gretel, the house, and the witch are separate sprites. Hansel and Gretel walk

through the woods and eat the house. The witch then catches and eats them.”

o “Mervin spits cucumber seeds (which are separate sprites) at vegetables, which dodge the

seeds. After five hits, a vegetable explodes into three separate sprites, which fly through the

air. If any of these sprites hit the cucumber, it dies. The cucumber must slay a carrot, an

onion, a rutabaga, and a tomato to win.”

IMPORTANT:

 Keep your design simple. You can always add more later.

 Spend your time writing code, not drawing costumes.

 The teacher must approve your design before you can start writing your project.

